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ULTRASONIC TECHNIQUES FOR THE EVALUATION OF CERAMIC JOINTS* 

W. A. Simpson, Jr., and R. W. McClung 

ABSTRACT 

The increasing use of structural ceramics in high- 
temperature applications has led to the need for nondestructive 
evaluation techniques to ensure the integrity of the ceramic 
materials and the quality of joints consisting of ceramics 
bonded to ceramics or to metals.  We describe the development of 
ultrasonic techniques for the characterization of ceramic 
materials and for the detection of flaws in these materials and 
at ceramic joints. This work has led to the ability to deter- 
mine which face of a 60-um-thick layer of braze filler material 
is unbonded, thus providing information about the integrity of 
the ceramic—filler metal bond.  We also describe the development 
of a rapid technique using Lamb waves to probe the bond between 
alumina coupons in flexure-strength specimens, whose geometry 
makes conventional ultrasonic evaluation of the bond difficult. 

INTRODUCTION 

The excellent high-temperature thermal, mechanical, and physical 

properties of structural ceramics make them likely choices for use in 

advanced engine designs to allow higher combustion temperatures and 

therefore higher thermodynamic efficiencies.  In addition, the lower 

weight of such materials relative to that of high-temperature structural 

alloys should increase an engine's ratio of power to weight.  Unfortunately, 

the low fracture toughness, and hence the small critical flaw size, of 

structural ceramics precludes the use of standard nondestructive eval- 

uation (NDE) techniques that have been developed over the last 30 years 

for detection and characterization of critical flaws in metals.  For 

example, flaws of critical size in most structural metals can be detected 

with ultrasonic waves whose frequencies lie in the range from 1 to 10 MHz. 

Consequently, most development in ultrasonics has encompassed this fre- 

quency range, with little activity occurring above 15 to 20 MHz.  In con- 

ventional monolithic ceramics, however, the critical flaw size is about 

^Research sponsored by the U.S. Department of Energy, Office of 
Energy Utilization Research, under the Energy Conversion and Utilization 
Technologies (ECUT) Materials Program, under contract DE-AC05-840R21400 
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20 um, and for such small flaw sizes the use of frequencies of 50 MHz and 

higher is required.  In addition, detection of such small flaws requires 

the use of focused radiation, and the propagation of such energy through 

the ceramic surface introduces severe aberration into the beam, thus 

limiting to a few millimeters the depth at which effective focus can be 

maintained.  Finally, several heat engine designs require that a ceramic 

be joined to a metal to take advantage of the physical and/or mechanical 

properties of each.  These applications require the development of tech- 

nology for joining ceramics to other ceramics and to metals and, no less 

importantly, for inspecting such joints nondestructively to ensure bond 

integrity.  This report describes work performed by the Nondestructive 

Testing Group of the Metals and Ceramics Division on the development of 

equipment and techniques for detecting small flaws in ceramic-ceramic and 

ceramic-metal joints. 

The objective of this program is to investigate methods for NDE of 

ceramic joints leading to recommendations and development of techniques 

for evaluating important properties and characteristics that affect the 

serviceability of joints. 

EXPERIMENTAL PROCEDURES AND RESULTS 

CERAMIC MATERIALS 

In order to develop techniques for the inspection of ceramic joints 

it is first necessary to characterize the ceramic materials themselves, 

since they will often be the determining factor in the choice of test 

parameters.  This is in contrast to the ultrasonic inspection of metals, 

where the properties other than the wave velocities of the host can 

frequently be neglected.  The engineering constants (Young's modulus, 

Poisson's ratio, etc.) can easily be determined nondestructively for 

ceramics by well-known techniques, but this information does not determine 

the basic inspectability of the sample for a given flaw size.  For 

example, two specimens may have identical engineering constants, but one 

may be inspectable with 100-MHz ultrasonic energy while the second may not 

transmit energy above 20 MHz.  This behavior results from the fact that 



attenuation is highly sensitive to the microstructure of the host; for 

example, one can glean some information about the average grain size from 

an attenuation measurement. Therefore, to the determination of the stand- 

ard engineering constants should be added the attenuation behavior of the 

particular specimen for ultrasonic energy in a frequency range commen- 

surate with the flaw size of interest. 

Transfer Curve 

Although the measurement of attenuation at discrete frequencies is a 

standard procedure in ultrasonics, the use of such an approach at the high 

frequencies employed in ceramic inspection would be prohibitively 

expensive because of the high cost of transducers. A much better approach 

is to use a single broadband transducer to transmit a range of 

frequencies and, using a computer, to analyze each frequency component 

separately.  This approach offers the additional advantage of automating 

the application of corrections to compensate for such nonspecimen losses 

as beam spread, acoustic impedance mismatch, etc.  In addition, the 

effects of the transducer response and system electronics can be removed 

from the acquired data to yield a true attenuation versus frequency 

response for the specimen.  This response is termed the transfer curve of 

the specimen, in analogy to the similar function in optics.  In our work, 

all these corrections have been incorporated into a single computer 

program that computes the transfer curve from input data consisting of the 

signals reflected from the front and rear surfaces of a planar sample of 

the material under test. 

When we first began computing transfer curves for ceramics, several 

anomalies arose that could not be attributed to the samples.  In 

particular, the attenuation in all samples at frequencies above about 

30 MHz was much higher than would be expected from optical measurements of 

the microstructure. This behavior was ultimately traced to the very thin 

(<l-um) layer of water used to couple the ultrasonic energy into the 

ceramic part.  For frequencies less than about 15 MHz, the thickness of 

this coupling layer is such a small fraction of the ultrasonic wavelength 

that it is negligible.  As the frequency increases, however, the coupling 

layer becomes a larger fraction of a wavelength, and its presence is no 

longer negligible.  When we analyzed this configuration, treating it as a 



three-layer rather than a two-layer problem, it became obvious that a 

correction would have to be added to account for the presence of the 

coupling layer.  Figure 1 shows how the reflection coefficient varies as a 

function of frequency for a water coupling layer 1 um thick.  At lower 

frequencies the coefficient approaches the two-layer value, where the 

effect of the water is negligible.  Our computer program was subsequently 

modified to actually measure the thickness of the coupling layer during a 

test and provide a correction in the data.  The transfer curve so obtained 

is now highly repeatable and in agreement with destructive analysis. 
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Fig. 1.  Reflection coefficient at a water-silicon carbide interface 
for a 1-um water layer. 



Figures 2 and 3 illustrate the effect of the micro-structure on the 

transfer curve.  In Fig. 2, the sample is a piece of tetragonal zirconia 

polycrystalline (TZP) ceramic with a microstructure of primarily 10-um 

tetragonal-phase grains.  In Fig. 3, however, the sample is a partially 

stabilized zirconia (PSZ) with predominantly cubic grains about 100 um in 

diameter.  It is difficult to propagate through the PSZ an elastic wave 

whose frequency exceeds about 30 MHz because of severe scattering losses. 

For such material, the minimum detectable void diameter is probably also 

about 100 um. 
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Fig. 2. Transfer curve of tetragonal zirconia polycrystalline ceramic. 
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Fig. 3. Transfer curve of partially stabilized zirconia. 

Detection of Flaws in Ceramics 

Also of interest in characterizing the ultrasonic response of a 

ceramic material is the detection of flaws comparable to or larger than 

the critical flaw size, particularly if they occur in the vicinity of a 

joint. From published destructive analyses of flaw initiators in ceramic 

materials, a common flaw shape is the quasi-spherical void or inclusion. 

This is fortuitous, since a model exists for the scattering of elastic 

waves from spherical cavities and inclusions.1 For a planar crack, we 

have previously demonstrated a successful model for measuring crack 

size.2 



Figure 4 shows the calculated response to elastic waves of a 

spherical void in silicon nitride. The abscissa is the dimensionless 

product of the wave number, k  (i.e., 2TT/X, where X is the ultrasonic 

wavelength in centimeters), of the incident radiation and the void radius, 

a.    For a given flaw size, the abscissa is thus proportional to frequency. 

The ordinate is the differential scattering cross section. The response 

may be divided into three regions:  (1) the low-frequency region 

(Rayleigh scattering) in which the scattering increases as the fourth 

power of the frequency, (2) the transition region (located at ka ~  1), and 

(3) the high-frequency region in which the scattering cross section is 

oscillatory with an approximately constant average value. The latter 

behavior can be traced to interference between two waves scattered by the 

sphere. The first is the direct wave reflected from the near point of the 

sphere, and the second is the so-called "creeping" wave, which, after 

tangential incidence, propagates around the sphere and is reemitted after 

0RNL-DWG85-15662R 
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void. 
Fig. 4.  Differential cross section for scattering from a spherical 



traversing half the circumference. The periodicity of the oscillation is 

thus related to the size of the void. For natural flaws, however, even 

those whose shape is very nearly spherical, the surface roughness may 

rapidly attenuate the latter wave, and the high-frequency scattering 

depicted in Fig. 4 may be replaced by a near-constant value.  In this 

case, the size of the scattering center may be approximated by noting that 

the transition region occurs at ka  « 1; thus if the frequency of the 

turning point, that is, the transition from Rayleigh to high-frequency 

scattering, is known, the radius of the sphere may be estimated. 

Figure 5 shows experimental data obtained on a natural flaw in TZP 

ceramic. Here the turning point occurs at about 89 MHz. Based on the 

measured velocity, the flaw diameter was estimated to be approximately 

25 um. That the flaw size is of this order of magnitude is also supported 

by the fact that it could not be detected reliably with a scan increment 

of 50 um but could with an increment of 25 um. 

ORNL-nWG 8S-15660 
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Fig. 5. Experimental data for scattering from a natural flaw in 
tetragonal zirconia polycrystalline ceramic. 



PLANAR JOINTS 

Ceramic-Cap Piston Specimens 

Two large ceramic-to-metal brazements that mock up the attachment 

of a ceramic cap to a diesel engine piston were made available for 

nondestructive testing studies.  These specimens are 111 mm (4 3/8 in.) 

in diameter and consist of a 6.4-mm-thick (0.25-in.) PSZ cap brazed to 

a nodular cast iron (NCI) disk via a titanium transition piece and a 

commercial Ag-Cu-Sn brazing filler metal.3 The surface of the ceramic had 

been vapor coated with titanium to promote wetting by the filler metal. 

Figure 6 shows the geometry of the joint and Fig. 7 one of the specimens. 

The thickness of each braze layer was about 60 ym and that of the titanium 

transition piece about 0.6 mm. 

ORNL-DWG 86-1862 
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Fig. 6.  Diagram of a transition joint for bonding a ceramic to nodu- 
lar cast iron (NCI) to simulate a diesel-engine piston with a ceramic cap. 
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Initial ultrasonic examination of each specimen indicated a 

relatively high attenuation for elastic waves in the ceramic cap, 

restricting the maximum usable frequency to about 25 MHz. From our 

previous studies of the attenuation characteristics of PSZ material, this 

behavior was consistent with the scattering losses produced by the 

relatively large grain size (~100 um) of this ceramic. 

Both specimens were scanned in our high-frequency (100-MHz) 

ultrasonic system, which permits variations in the transmission of the 

ceramic-metal bond to be displayed as a gray-scale image.  A flat 

(unfocused), broadband transducer was used, and both samples were found to 

contain nonbonded regions near the center.  Figure 8 shows the result for 

one of the brazements. Here lighter areas indicate relatively better 

transmission through (less reflection from) the bond, and darker areas 

indicate relatively poorer transition (greater reflection). The dark area 

near the center is completely unbonded.  (In the original data this area 

was uniformly dark; it did not reproduce well photographically, however.) 

The dark ring near the periphery of the sample is an edge effect caused by 

the unfocused transducer. 

ORXL-nifG   SS-15&64 

Fig. 8. Gray-scale presentation of ultrasonic transmission through 
the bond in piston specimen 1. 
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The samples were scanned a second time using a focused transducer. 

Focusing minimizes edge effects and more sharply delineates the region of 

unbond.  Figure 9 shows the raw gray-scale data for the second sample, 

which is seen to be unbonded in the center and at several locations around 

the periphery. 

ORNL-niVi; 85-15I.5S 
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Fig. 9.  Gray-scale presentation of ultrasonic transmission through 
the bond in piston specimen 2. 

The raw pixel data from these gray-scale images were next computer 

processed to permit expansion of a selected range of gray-scale values. 

Such processing allows minor (<3-dB) bond variations to be ignored and 

fluctuations within the unbonded areas to be enhanced. Figures 10 and 11 

show the processed images for the two specimens.  As expected, the areas 

delineated show virtually no variations, which is indicative of complete 

unbonding.  The shape, size, and location of the affected areas are also 

precisely determined by this processing. 
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Fig. 10.  Enhanced gray-scale presentation of ultrasonic transmission 
through the bond in piston specimen 1. 
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Fig. 11. Enhanced gray-scale presentation of ultrasonic transmission 
through the bond in piston specimen 2. 
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Because there are several interfaces in the PSZ-NCI joint (Fig. 6), 

one would like to know at which of these interfaces the unbond occurs, 

since this information could provide insight into the origin of the 

problem.  In addition, while the precise location of the unbond may be 

immaterial from an accept-reject point of view, such information is 

important in the development of ceramic brazing technology.  For example, 

if the unbond occurs at the ceramic-braze interface, it could indicate a 

failure of the braze filler metal to wet the ceramic surface, and 

wettability is a major consideration of the brazing development program. 

Fortunately, the location of the unbond can be determined nondestructively 

from the ultrasonic scattering data. Figure 12 shows the rf waveform of 

signals scattered by the transition joint in three areas of the specimen 

whose data were shown in Figs. 9 and 11.  In Fig. 12, the upper trace 

(trace A) is that obtained from a well-bonded region. The two signals are 

from the faces of the 600-ym-thick titanium transition piece, with the PSZ 

to the left and NCI to the right.  The ultrasonic wave is incident from 

the PSZ.  In trace B, the second signal is much larger, and the third 

signal, resulting from reverberation in the titanium, indicates that the 

unbond occurs on the NCI side of the titanium.  In trace C, the first 

signal is much larger, and the absence of the signal from the opposite 

face of the titanium indicates that the sample is unbonded on the PSZ side 

of the titanium. 

ORNL-DWG   85-15S6S 
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Fig. 12. Radio-frequency waveform of the ultrasonic signal scattered 
by the interface of piston specimen 2 for various bond conditions. 
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If the ceramic material will support elastic waves of a sufficiently 

high frequency, the signals from opposite faces of the nominal 60-um-thick 

braze layer can be resolved (a time resolution of only 30 ns), and it is 

then possible to tell directly whether the unbond occurs at the 

ceramic-braze or braze-titanium interface. For example, Fig. 13 shows the 

waveform obtained from the joint region of a sample containing TZP (wide 

bandwidth) ceramic.  The first two signals originate at the faces of the 

nominal 60-ym-thick braze layer between the TZP and the titanium 

transition piece.  The second two are from the similar braze layer between 

the titanium and the NCI substrate.  Note that the signals from the braze 

layers are resolved, which permits the condition of any of the four 

interfaces to be monitored.  The restricted bandwidth of the PSZ is not 

sufficient to resolve these signals (frequencies above about 30 MHz are 

not transmitted).  However, we have recently developed a technique to 

enhance the resolution of closely spaced ultrasonic signals." Use of this 

technique will generally produce delta functions in the output data at the 

location of each individual wave center in the input data, even when the 

waves are too closely spaced to resolve in the time domain.  When this 

technique was used to process the signals from the data of Fig. 12, the 

signals from either face of the braze layers could be resolved, as shown 

in Fig. 14.  Since all four signals are present, the region is one in 

which the sample is well bonded.  For the central unbond region of the 

simulator shown in Fig. 11, however, the processed data show only a single 

YP1588 

Fig. 13. Radio-frequency waveform of the ultrasonic signal scattered 
by the interface in tetragonal zirconia polycrystalline ceramic. 
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Fig 14. Processed data showing recovery of four interface signals in 
the bonded region of tetragonal zirconia polycrystalline ceramic. 

delta function at the location of the PSZ-braze interface, indicating that 

the problem is failure of the braze to adhere to the ceramic. 

These results indicate that for both samples, the central unbond 

occurs at the PSZ interface.  For the specimen of Figs. 9 and 11, some of 

the edge indications are unbonded at the PSZ interface and some at the NCI 

interface. 

Following NDE, the Materials Joining Group sectioned the sample of 

Figs. 9 and 11 through the unbonded region delineated by the central indi- 

cation. When the region was cut out, the ceramic cap actually fell off. 

Subsequent metallographic examination of the ceramic-braze interface 

revealed the presence of extreme porosity, possibly due to trapped gas. 

The nondestructive results were thus validated. 

Shear Specimens 

Following examination of the piston-cap specimens, some smaller 

ceramic-metal brazements were made available.  These samples were 

approximately 9-mm-square pieces of 3.5-mm-thick zirconia ceramic brazed 

to an NCI substrate with a 0.6-mm-thick titanium transition piece.  In 

this case, however, the ceramic was a fine-grained TZP material that could 

support elastic waves at frequencies in excess of 100 MHz.  In such 
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samples, effective focus could be maintained at depths up to 5 mm for 

these frequencies: accordingly, a 100-MHz focused transducer with a focal 

length of 25.4 mm in water was obtained to exploit this condition. At 

this frequency and with the transducer focused at the PSZ-braze interface, 

the signals from either side of the 60-um braze layer could be resolved, 

even though these signals are separated by only about 30 ns. Therefore, 

we were able to gate selectively the signal from the TZP-braze interface 

for analysis.  This signal is an indicator of the quality of the bond that 

exists between the braze filler metal and the TZP.  Figure 15 shows two of 

the samples and Fig. 16 the results of scanning the bond region.  In these 

gray-scale presentations, lighter areas indicate relatively better bonding 

while darker regions depict relatively poorer bonding.  The sample on the 

right has numerous small regions where there is lack of bonding.  These 

regions average perhaps 100 um in diameter and are probably caused by 

bubbles of trapped gas in the braze material. The presence of these 

bubbles has been previously demonstrated by destructive analysis and 

inferred from examination of the fracture surface, but, until now, we have 

not been able to detect their presence nondestructively. 

YP2041 

Fig. 15. Tetragonal zirconia polycrystalline ceramic joint specimens. 
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Fig. 16.  Gray-scale presentation showing the detection of pores in 
the braze layers of the ceramic joint specimens shown in Fig. 15. 

A diagonal band, running from lower left to upper right of the sample 

on the right, can be seen in the data of Fig. 16.  The cause of this 

darkening is not known, but possibilities include the presence of 

microporosity or residual stress in the braze layer.  The dark area in the 

upper left of the sample on the right is caused by severe thinning of the 

braze material. 

The generally darker nature of the sample on the left in Fig. 16 is 

possibly attributable to use of a different grade of ceramic.  Small 

variations in the acoustic properties alter the reflection coefficient 

at the TZP-braze interface and vary the average brightness of the 

reproduced data. 

The sample on the left also exhibits a periodic variation in the 

interface that may be caused by machining marks on the TZP.  No such marks 

are detectable on the visible surface, but they sometimes occur on one or 

more surfaces of the blanks. 
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The above results indicate that a great deal of information about the 

nature of the PSZ-braze bond can be gleaned from the ultrasonic scattering 

if the signals from the braze layer can be resolved.  However, if they 

cannot, as is the case at typical ultrasonic frequencies (1-10 MHz), the 

signal generated by subtle variations at the filler metal-PSZ interface 

will be swamped by the signals from the filler metal-titanium interface. 

Manufactured Flaws 

We have considerable interest in determining the minimum detectable 

area of unbond in a ceramic joint. From the backscattering spectrum 

obtained from discrete flaws in ceramics, we earlier showed (see Fig. 5) 

the ability to infer a minimum measurable flaw size of about 25 um (the 

minimum detectable flaw size will be still smaller) with our present 

system.  It is difficult to fabricate discontinuities in this size range. 

However, we obtained a standard consisting of a bonded couple between a 

P-leg and an N-leg of a silicon-germanium thermoelectric sample.  The bond 

contains three manufactured flaws having diameters of 250, 650, and 

125 um, and the acoustic properties (i.e., velocity and density) of the 

silicon-germanium are similar to those of typical ceramics.  Figure 17 

ORNL-DWG. 86-8668 

Fig. 17.  Three-dimensional presentation of the ultrasonic detection 
of, left to right, 250-, 635-, and 125-um flaws at the interface between 
two silicon-germanium thermoelectric samples. 
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is a pseudo three-dimensional view of the ultrasonic scattering from the 

bond line showing the detection of all three flaws.  In the lower left of 

the figure is a natural crack that extended through the substrate and ter- 

minated at the interface.  Figure 18 is a view of the data from a lower 

angle, making the smallest flaw more visible.  Figure 19 is an expansion 

of the region around the 125-um flaw.  Note that the flaw signal is much 

larger than the background from the interface; thus, we should be able to 

see flaws considerably smaller than 125 ym reliably. 

ORNL-DWG. 86-8669 

Fig. 18.  Three-dimensional presentation (from a lower angle then in 
Fig. 17) of the ultrasonic detection of, left to right, 250-, 635-, and 
125-um flaws at the interface between the two silicon-germanium thermo- 
electric samples. 
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Fig. 19. Three-dimensional presentation of the region around the 
125-um flaw at the interface between the two silicon-germanium thermo- 
electric samples. 

BUTT JOINTS 

Lamb Wave Studies 

For the samples described earlier in this report, the specimen 

geometry was such that bulk-wave probing of the joint region (albeit at 

frequencies far above those used in conventional ultrasonic testing) could 

be performed at normal incidence.  We demonstrated earlier the ability to 

resolve signals from either side of the 60-ym-thick layer of brazing 

filler metal when the ultrasonic waves were incident normally on the 

joint.  This capability then allowed us to determine whether a lack of 

bond occurred at the ceramic or metal interface of the joint and to 

measure the variation in filler metal thickness across the specimen. 



22 

For some specimen configurations, normal-incidence testing of the 

braze region using bulk waves is not possible.  For example, a butt-braze 

joint between thin plates requires angle beams if bulk waves are used to 

interrogate the interface.  While this configuration may or may not be 

important in the final application of ceramic joining to heat engines, it 

is of considerable importance to the development of joining technology in 

that many test specimens use such joint geometries.  For example, 

specimens to measure flexural strength of ceramic-ceramic or ceramic-metal 

brazements are of this type (see Fig. 20), and inspection techniques must 

be developed so that correlations between NDE indications and mechanical 

properties can be determined.  Only in this way can one differentiate 

between significant and ignorable indications. 

ORNL-DWG 85-7800 

NOTE: SAMPLESARE FLIPPED 
ON SIDE FOR BEND TEST 

4.   FOUR-POINT BEND TEST 

Fig. 20.  Fabrication of ceramic flexure-strength specimens with 
butt-braze joints. 
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We have examined several butt-braze joints in 25.4 x 14.2 x 2.9 mm 

alumina coupons using high-frequency angle-beam techniques. While this 

approach would appear to have considerable potential for evaluating bond 

quality, the results thus far have been more difficult to interpret than 

the results from normal-incidence tests, and they suffer from the fact 

that the focal point of the transducer cannot be maintained exactly on the 

bond across the full height of the joint. This test is also relatively 

slow, since the bond must be scanned using a small linear increment. 

A second approach for evaluating bond quality in butt-joint specimens 

relies on measurement of the transmission coefficient of so-called plate 

or Lamb waves propagated through the bond.  In this technique, a Lamb 

wave, which is the elastomechanical analog of guided electromagnetic 

waves, is excited on one side of the joint and the amplitude of the wave 

on the second side measured after propagation through the bond.  This 

approach has the advantage of requiring scanning only along a single axis, 

making it much faster than conventional testing.  The frequencies involved 

are also quite low, typically 1 to 5 MHz.  The quantity determined by this 

measurement is the relative area of the bonded region, which has been 

related to the prediction of shear strength for spot welds in metals.5 

As is the case for electromagnetic guided waves, Lamb waves are 

highly dispersive.  Since the propagation of such a wave along a plate 

produces (microscopic) flexure of the plate, Lamb waves can produce either 

symmetric or antisymmetric modes according to the symmetry of the flexure 

with respect to the center line of the plate.  Figures 21 and 22 show the 

calculated dispersion curves for the first four symmetric and 

antisymmetric modes in 2.9-mm-thick alumina.  Since the ordinate gives the 

Lamb wave phase velocity (normalized by the shear wave velocity), it is 

also related to the angle of incidence necessary to generate the given 

Lamb mode.  Thus a horizontal line will intersect the various possible 

modes, whose abscissas give the frequencies necessary to establish the 

modes at the indicated angle of incidence of the exciting energy. 
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Fig. 21.  Dispersion curves for symmetric Lamb wave modes in alumina. 
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Fig. 22. Dispersion curves for antisymmetric Lamb wave modes in alumina. 
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Figure 23 is an experimental result showing the excitation of five 

Lamb wave modes in a 2.9-mm-thick alumina coupon.  The normalized velocity 

of each wave is 1.25, and the mode frequencies are in good agreement with 

the values shown in Figs. 21 and 22.  Note that this normalized velocity 

does not intersect the dispersion curve of the lowest-order antisymmetric 

mode; thus, this wave is not present in the spectrum.  The relative 

amplitudes of the various waves are determined primarily by the response 

of the exciting transducer, which, in these studies, is a broadband 5-MHz 

unit. 

ORNL-DWG.   86-8674 
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Fig. 23.  Spectrum of Lamb wave modes in an alumina coupon. 

A pure-mode response can be obtained by using single-frequency 

excitation of an appropriate transducer. Alternatively, one can use a 

relatively narrow-band transducer and select a normalized velocity 

(incident angle) such that only one mode exists within the passband of the 

transducer. Figure 24 shows the excitation of a single mode, the 

lowest-order symmetric mode, in an alumina coupon by a 2.25-MHz transducer 

using pulse excitation. 
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Fig. 24.  Excitation of a single Lamb mode in an alumina coupon. 

In order to test the effectiveness of using Lamb waves to interrogate 

the butt-braze joint in alumina flexure-strength specimens, the specially 

fabricated sample shown in Fig. 25 was made.  A piece of tantalum foil at 

each end of the joint provides the proper separation of the ceramic halves 

during melting of the braze.  A third piece of foil was placed in the center 

of this particular specimen to prevent bonding in that region and to 

simulate a nonbond of known dimensions.  The brazing filler metal was one 

of several under development at Oak Ridge National Laboratory that will 

wet oxide ceramics directly with no pretreatment of the ceramic surface. 
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Fig. 25.  Flexure-strength specimen containing a simulated nonbond. 

The standard was first examined by conventional angle-beam 

through-transmission techniques using 25-MHz transducers.  The joint was 

scanned in an x-y  pattern using an index of 100 um.  As expected, the 

central nonbond was easily detected using both flat and focused 

transducers. For the latter, the sensitivity varied from top to bottom of 

the interface because of variations in the beam profile with depth.  In 

both cases, however, numerous indications were generated at the top and 

bottom of the interface by a slight vertical misalignment of the ceramic 

coupons. This particular approach is sensitive to misalignment and is a 

disadvantage of angle-beam testing of butt joints. 

We next examined the standard using Lamb waves.  Two transducers were 

used with the transmitter and receiver located on opposite sides of the 

interface.  Figure 26 shows the transducer configuration. The transmitter 

was driven with a tone burst to ensure excitation of a single Lamb mode. 
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SYMMETRIC ANTISYMMETRIC 

Fig. 26.  Transducer configuration for excitation and detection of 
Lamb waves in the butt-brazed alumina coupon illustrated in Fig. 25. 

As expected, virtually no change in transmission amplitude was detected 

when the transducers were translated perpendicularly to the joint. 

Nevertheless, an x-y  scan (parallel and perpendicular to the interface) 

was made.  The results are shown in Fig. 27, where the height of the 

surface represents the Lamb wave transmission amplitude.  The central 

nonbond corresponds to the large dip in the surface.  Obviously, a single 

scan parallel to the interface would have sufficed, so this test can be 

performed very rapidly. 

A second butt-braze specimen was also available; it was a standard 

flexure bar consisting of titanium-coated PSZ coupons brazed with a com- 

mercial Ag-Cu-Sn filler metal.  Only the two end pieces of tantalum foil 

were present in this sample.  It was first tested by conventional angle- 

beam techniques with no indications detected other than the usual ones 

attributable to vertical misalignment of the ceramic plates.  In par- 

ticular, no regions of unbonding were found. 
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Fig. 27.  Lamb wave transmission through the bond of the alumina 
flexure-strength specimen illustrated in Fig. 25, showing detection of the 
simulated nonbond. 

Figure 28 shows the results obtained with Lamb waves on that second 

specimen.  There is a small region near the center of the braze joint 

where the Lamb wave transmission dips noticeably.  We then switched to a 

pulse-echo mode; that is, we monitored the amplitude of the Lamb waves 

reflected by the interface using first one and then the other transducer 

as a transmitter.  In each case, an enhanced reflection was found at the 

location of the dip in Fig. 28.  This eliminates problems in the ceramic 

(e.g., cracking) away from the interface as the source of the anomaly and 

establishes that some variation in the region of the interface engendered 

the signal. 

Radiographic examination of the specimen revealed no detectable flaws 

in the interface. 
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Fig. 28. Lamb wave transmission through the bond of another PSZ 
flexure-strength specimen having a simulated nonbond, showing a small 
indication near the center of the bond. 

These results indicate that Lamb waves are sensitive to some 

characteristics of the braze joint that conventional nondestructive test 

techniques do not detect.  The specimen will be cut into flexure bars and 

subjected to bend tests to try to develop a correlation between the 

inspection results and the strength of the bond. 

SUMMARY AND CONCLUSIONS 

The small critical flaw size in conventional monolithic structural 

ceramics has placed severe burdens on the development of ultrasonic 

NDE techniques for ensuring the integrity of parts fabricated of these 

materials.  Since the detectability of a given flaw increases as the wave- 

length of the interrogating radiation decreases (at least until the wave- 

length becomes comparable to the flaw size), frequencies of at least 

50 MHz are required to detect critical flaws in many ceramics.  In addi- 

tion, unlike structural metals, the interrogating ultrasonic radiation 
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must be focused in order to ensure that a sufficiently large fraction of 

the incident radiation is intercepted by the flaw.  The necessity of 

introducing focused radiation through the surface of the ceramic part 

(mandated by the desire to have rapid scanning capability) leads to severe 

spherical aberration of the ultrasonic beam within the part and limits the 

depth to which critical flaws can be detected to a few millimeters. 

Within these constraints, however, we have had considerable success in 

detecting flaws in the critical size range. 

Since a common flaw type in ceramics is a quasi-spherical void or 

inclusion, a model was discussed for the scattering of ultrasonic waves 

from spheres.  This model was applied to scattering from natural flaws in 

partially stabilized zirconia, and a flaw diameter of about 25 um was 

inferred. 

Since the attenuation behavior of structural ceramics for ultrasonic 

waves is critical to determining the minimum detectable flaw size, a 

technique was developed that permits a material transfer curve, or 

attenuation versus frequency response, to be determined for any ceramic. 

This process corrects for all known material-independent losses, such as 

diffraction (beam spread), acoustic impedance mismatches at the surfaces of 

the part and at internal interfaces, and frequency-dependent coupling 

losses between the transducer and the surface of the part.  The transfer 

curve is highly sensitive to changes in the microstructure of the ceramic, 

and examples of the differences in TZP and PSZ ceramics were given. 

Since current heat engine designs contain components consisting of a 

ceramic material clad on a metallic substrate to achieve both 

high-temperature tolerance and toughness, additional evaluation techniques 

were required for assurance of the quality of a ceramic-metal bond.  The 

braze layer in such a bond is typically of the order of 60 um thick, and, 

if nonbonding occurs, the tester needs to determine which face of this 

layer is nonbonded.  For high-frequency ceramics, this condition could be 

determined by interrogating the bond with frequencies sufficiently high 

(~100 MHz) to resolve the layer thickness.  Examples were given of the 

detection of 100-um-diam pores in the braze layer using this approach. 

When the ceramic host would not support ultrasonic waves of such a high 
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frequency, however, advanced signal processing techniques had to be 

developed to recover the desired information. An example was given of the 

identification of the correct interface in a braze joint in PSZ. 

Although no specimens were available for study that contained 

manufactured flaws of known size in the bond layer of a ceramic-to-metal 

joint, a sample containing such flaws at the interface between a P-leg and 

an N-leg of a silicon-germanium specimen was obtained.  The detection of a 

125-um flaw was demonstrated, and the signal-to-noise ratio for this flaw 

indicates that considerably smaller flaws could be detected reliably. 

In testing joints between ceramic coupons, it is often not possible 

to introduce the ultrasound at normal incidence to the bond because of 

specimen geometry.  In such cases, angle-beam testing techniques can be 

used, but it is difficult to maintain transducer focus across the full 

width of the interface.  In addition, angle-beam testing was found to be 

unduly sensitive to slight vertical misalignment of the two plates being 

joined.  For these configurations, a second approach, one using plate or 

Lamb waves, was studied.  Two transducers were used: one launches a Lamb 

wave in either plate of the specimen, and the second receives the wave in 

the other plate after propagation through the joint.  The amplitude of the 

received wave is an indicator of the condition of the bond in the region 

between the transducers. 

Dispersion curves for Lamb waves in alumina coupons were calculated, 

and a system was assembled for evaluation of the bond by these waves.  The 

system was shown to detect a simulated nonbond easily, and inspection of a 

second sample by this technique revealed an indication in the bond area 

that was not detected by angle-beam testing. 

While bonds between ceramic components and between ceramic and 

metallic parts present a number of difficult problems to the researcher, 

considerable progress has been made in developing techniques that will 

allow the integrity of these bonds to be assured nondestructively. Many 

problems remain, however. Perhaps the most common criticism directed at 

ceramic inspection is that it is slow in comparison with inspection of 

metals. Rarely is it noted, however, that most ceramic inspection systems 

do not approach the state of the art in data acquisition rates.  This is 

understandable, since technique development is of more importance at the 
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present time in ceramic evaluation than it is for metals, where the tech- 

niques have a long history of development.  Inspection rates will undoubt- 

edly increase for ceramic evaluation as the approaches become established. 

A more fundamental limitation in ceramic or ceramic-joint evaluation 

is related to the requirement for focused radiation.  The severe 

aberrations introduced into the beam by propagation through the sample 

surface limit the depth to which effective focus can be maintained.  This 

depth can be increased somewhat by increasing transducer frequency and 

focal length, but the relationship does not appear to favor this approach. 

Some form of this limitation will likely persist in the foreseeable 

future. 

The techniques presented here do not exhaust the potential tools for 

ceramic-joint evaluation by a wide margin.  For example, some form of 

direct interface wave (i.e., a wave that propagates in the bond material 

but not in the ceramic) may possibly yield information about the strength 

of the bond itself.  This result would indeed be valuable, since there is 

currently no known correlation between bond strength and measurable 

acoustic properties. 
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